Homepage
IMR Agency
About Us
Contact Us
Titles
Advanced Search
New Titles
Coming Soon
Search
Titles by Category
Allergy
Anaesthesiology
Audiology
Biomedical Science
Cardiology
CNS
Complementary & Alternative Medicine
Cosmetic Science
Critical Care
Cytology
Dentistry
Dermatology
Diabetes
Electrophysiology
Embryology
Emergency medicine & trauma
Endocrinology
Epidemiology
Gastroenterology
General medicine
Genetics
Gerontology
Gynaecology
Haematology
Hepatology
Histology
Imaging
Immunology
Infectious Diseases
Men's Health
Mental Health
Microbiology
Nephrology
Neurology
Nursing & Midwifery
Obstetrics & Gynaecology
Oncology & Radiation Therapy
Ophthalmology
Orthopaedics
Other
Otolaryngology
Paediatrics
Pain Management
Palliative
Pathology
Patient
Pharmacology
Physiology & Anatomy
Plastic/Reconstructive Surgery
Psychiatry & Psychology & Counselling
Public Health
Pulmonology
Radiology & Nuclear Medicine
Rehabilitation
Reproductive Medicine
Respiratory Medicine
Rheumatology
Sleep Disorders
Social Work
Sports Medicine
Surgery
Urology
Vascular
Weight Management & Nutrition
Women's Health
Title Detail
View:
Synopsis
Table of Contents
Territory
Found In
Heterocyclic Chemistry At A Glance, 2nd Edition
by John A. Joule, Keith Mills
Publisher:
Wiley-Blackwell
Format:
Hardback Book (230 Pages)
Published:
October 2012
ISBN:
9780470971222
Click here to enquire about this title
Tell a friend
Synopsis
Heterocyclic chemistry is a central part of organic chemistry and biochemistry, dealing with a particular set of chemical structures; organic compounds with a ring structure containing at least one heteroatom (commonly nitrogen, oxygen or sulfur).
Heterocyclic Chemistry at a Glance, Second Edition provides both an introduction and summary of the main principles and reactions of heterocyclic chemistry, for students studying chemistry and related courses at undergraduate level.
This second edition has been much expanded, allowing for a more thorough treatment of key principles and the inclusion of extra examples and illustrations, including heterocycles used in electronics, explosives, polymers, dyestuffs, pigments and that occur in food. All chapters have been revised and updated, including references to books and reviews, and student exercises, with answers on line at http://booksupport.wiley.com. New to this edition is the use of colour in schemes and diagrams highlighting parts of products (or intermediates) where a change in structure or bonding has taken place.
Based on the highly successful and student-friendly “at a glance” approach, the material developed in this book has been chosen to help the student grasp the essence of heterocyclic chemistry, ensuring that they can confidently use that knowledge when required. The structure of the book allows for quick assimilation, understanding and recall of key concepts, facts and definitions, providing an invaluable aid to revision for students preparing for examinations.
Reviews for the first edition:
“This book can be recommended to students looking for a textbook on heterocyclic chemistry. The organization of the material is oriented towards the needs of undergraduate students, but nevertheless the book is comprehensive and will also be of value for more advanced readers." Heterocycles
"Joule and Mills have succeeded here in condensing the essence of introductory undergraduate heterocyclic chemistry into a slim volume, presented (as is the way in this series) in an A4 page format and in a very easy-to-grasp style with many structures and reactions. All of the key areas are covered.” Chemistry World
Table of Contents
Abbreviations xii
Introduction xiv
1. Heterocyclic Nomenclature 1
Six-membered aromatic heterocycles 2
Five-membered aromatic heterocycles 2
Non-aromatic heterocycles 3
Small-ring heterocycles 3
2. Structures of Heteroaromatic Compounds 4
Structures of benzene and naphthalene 4
Structures of pyridines and pyridiniums 5
Structures of quinolines and isoquinolines 6
Structures of diazines (illustrated using pyrimidine) 6
Structures of pyrroles, thiophenes and furans 6
Structure of indoles 8
Structures of azoles (illustrated with imidazole) 8
3. Common Reaction Types in Heterocyclic Chemistry 9
Introduction 9
Acidity and basicity 9
Electrophilic substitution of aromatic molecules 10
Nucleophilic substitution of aromatic molecules 13
Radical substitution of heterocycles 14
C-Metallated heterocycles as nucleophiles 15
Generation of C-metallated heterocycles 16
Dimethylformamide dimethyl acetal (DMFDMA) 17
Formation and hydrolysis of imine/enamine 18
Common synthetic equivalents of carbonyl compounds in ring synthesis 19
Cycloaddition reactions 19
4. Palladium in Heterocyclic Chemistry 21
Palladium(0)-catalysed (and related) reactions 21
Catalysts 21
Cross-coupling reactions between organometallic species and halides (sometimes trifl ates) – making carbon–carbon bonds 23
Addition to alkenes: the Heck reaction 26
Carbonylation reactions 26
Cross-coupling reactions between heteroatom nucleophiles and halides – making carbon–heteroatom bonds 27
Trifl ates as substrates for palladium-catalysed reactions 27
Mechanisms of palladium(0)-catalysed processes 28
Reactions involving electrophilic palladation 29
Copper-catalysed amination 30
Selectivity 31
5. Pyridines 33
Electrophilic addition to nitrogen 33
Electrophilic substitution at carbon 34
Nucleophilic substitution 35
Nucleophilic addition to pyridinium salts 36
C-Metallated pyridines 37
Palladium(0)-catalysed reactions 39
Oxidation and reduction 39
Pericyclic reactions 40
Alkyl and carboxylic acid substituents 40
Oxygen substituents 41
N-Oxides 42
Amine substituents 43
Ring synthesis – disconnections 43
Synthesis of pyridines from 1,5-dicarbonyl compounds (1,2- and 1,6-bonds made) 44
Synthesis of pyridines from an aldehyde, two equivalents of a 1,3-dicarbonyl compound and ammonia (1,2-, 3,4-, 4,5-, and 1,6-bonds made) 45
Synthesis of pyridines from 1,3-dicarbonyl compounds and a C2N unit (3,4- and 1,6-bonds made) 45
Exercises 47
6. Diazines 48
Electrophilic addition to nitrogen 49
Electrophilic substitution at carbon 49
Nucleophilic substitution 50
Radical substitution 52
C-Metallated diazines 52
Palladium(0)-catalysed reactions 53
Pericyclic reactions 54
Oxygen substituents 55
N-Deprotonation, N-alkylation and N-arylation 55
N-Oxides 57
Amine substituents 57
Ring synthesis – disconnections 58
Synthesis of pyridazines from 1,4-dicarbonyl compounds (2,3- and 1,6-bonds made) 58
Synthesis of pyrimidines from 1,3-dicarbonyl compounds (3,4- and 1,6-bonds made) 58
Synthesis of pyrazines from 1,2-dicarbonyl compounds (4,5- and 1,6-bonds made) 59
Synthesis of pyrazines from -amino carbonyl compounds (1,2- and 4,5-bonds made) 60
Benzodiazines 60
Exercises 61
7. Quinolines and Isoquinolines 62
Electrophilic addition to nitrogen 62
Electrophilic substitution at carbon 62
Nucleophilic substitution 63
Nucleophilic addition to quinolinium/isoquinolinium salts 64
C-Metallated quinolines and isoquinolines 65
Palladium(0)-catalysed reactions 65
Oxidation and reduction 66
Alkyl substituents 66
Oxygen substituents 67
N-Oxides 67
Ring synthesis – disconnections 67
Synthesis of quinolines from anilines (1,2- and 4,4a-bonds made) 67
Synthesis of quinolines from ortho-aminoaryl ketones or aldehydes (1,2- and 4,4a-bonds made) 68
Synthesis of isoquinolines from 2-arylethamines (1,2- and 1,8a-bonds made) 69
Synthesis of isoquinolines from aryl-aldehydes and an aminoacetaldehyde acetal (1,2- and 4,4a-bonds made) 69
Exercises 70
8. Pyryliums, Benzopyryliums, Pyrones and Benzopyrones 71
Pyrylium salts 71
Electrophiles 71
Nucleophilic addition 71
Ring-opening reactions of 2H-pyrans 71
Oxygen substituents – pyrones and benzopyrones 73
Ring synthesis of pyryliums from 1,5-diketones (1,2-bond made) 74
Ring synthesis of 4-pyrones from 1,5-diketones (1,2-bond made) 75
Ring synthesis of 2-pyrones from 1,3-keto-aldehydes (1,2- and 4,5-bonds made) 75
Ring synthesis of 1-benzopyryliums, coumarins and chromones 76
Exercises 77
9. Pyrroles 78
Electrophilic substitution at carbon 78
N-Deprotonation and N-metallated pyrroles 80
C-Metallated pyrroles 80
Palladium(0)-catalysed reactions 81
Oxidation and reduction 81
Pericyclic reactions 82
Reactivity of side-chain substituents 82
The ‘Pigments of Life’ 82
Ring synthesis – disconnections 83
Synthesis of pyrroles from 1, 4-dicarbonyl compounds (1,2- and 1,5-bonds made) 83
Synthesis of pyrroles from -amino-ketones (1,2- and 3,4-bonds made) 83
Synthesis of pyrroles using isocyanides (2,3- and 4,5-bonds made) 84
Exercises 85
10. Indoles 86
Electrophilic substitution at carbon 86
N-Deprotonation and N-metallated indoles 89
C-Metallated indoles 90
Palladium(0)-catalysed reactions 91
Oxidation and reduction 92
Pericyclic reactions 92
Reactivity of side-chain substituents 93
Oxygen substituents 94
Ring synthesis – disconnections 94
Synthesis of indoles from arylhydrazones (1,2- and 3,3a-bonds made) 94
Synthesis of indoles from ortho-nitrotoluenes (1,2- and 2,3-bonds made) 95
Synthesis of indoles from ortho-aminoaryl alkynes (1,2-bond made) 96
Synthesis of indoles from ortho-alkylaryl isocyanides (2,3-bond made) 96
Synthesis of indoles from ortho-acyl anilides (2,3-bond made) 96
Synthesis of isatins from anilines (1,2- and 3,3a-bonds made) 97
Synthesis of oxindoles from anilines (1,2- and 3,3a-bonds made) 97
Synthesis of indoxyls from anthranilic acids (1,2- and 2,3-bonds made) 97
Azaindoles 97
Exercises 98
11. Furans and Thiophenes 99
Electrophilic substitution at carbon 99
C-Metallated thiophenes and furans 101
Palladium(0)-catalysed reactions 102
Oxidation and reduction 102
Pericyclic reactions 103
Oxygen substituents 104
Ring synthesis – disconnections 105
Synthesis of furans and thiophenes from 1,4-dicarbonyl compounds (1,2-bond made) 105
Exercises 106
12. 1,2-Azoles and 1,3-Azoles 107
Introduction 107
Electrophilic addition to N 107
Electrophilic substitution at C 109
Nucleophilic substitution of halogen 110
N-Deprotonation and N-metallated imidazoles and pyrazoles 110
C-Metallated N-substituted imidazoles and pyrazoles, and C-metallated thiazoles and isothiazoles 111
C-Deprotonation of oxazoles and isoxazoles 112
Palladium(0)-catalysed reactions 113
1,3-Azolium ylides 113
Reductions 114
Pericyclic reactions 114
Oxygen and amine substituents 115
1,3-Azoles ring synthesis – disconnections 116
Synthesis of thiazoles and imidazoles from -halo-ketones (1,5- and 3,4-bonds made) 116
Synthesis of 1,3-azoles from 1,4-dicarbonyl compounds (1,2- and 1,5-bonds made) 117
Synthesis of 1,3-azoles using tosylmethyl isocyanide (1,2- and 4,5-bonds made) 118
Synthesis of 1,3-azoles via dehydrogenation 118
1,2-Azoles ring synthesis – disconnections 119
Synthesis of pyrazoles and isoxazoles from 1,3-dicarbonyl compounds (1,5- and 2,3-bonds made) 119
Synthesis of isoxazoles and pyrazoles from alkynes (1,5- and 3,4-bonds made) 120
Synthesis of isothiazoles from -amino , -unsaturated carbonyl compounds (1,2-bond made) 121
Exercises 121
13. Purines 122
Electrophilic addition to nitrogen 124
Electrophilic substitution at carbon 125
N-Deprotonation and N-metallated purines 125
Oxidation 126
Nucleophilic substitution 126
C-Metallated purines by direct deprotonation or halogen–metal exchange 128
Palladium(0)-catalysed reactions 128
Purines with oxygen and amine substituents 128
Ring synthesis – disconnections 130
Synthesis of purines from 4,5-diaminopyrimidines (7,8- and 8,9-bonds made) 130
Synthesis of purines from 5-aminoimidazole-4-carboxamide (1,2- and 2,3-bonds made) 131
‘One-step syntheses’ 131
Exercises 131
14. Heterocycles with More than Two Heteroatoms: Higher Azoles (5-Membered) and Higher Azines (6-Membered) 132
Higher azoles 132
Introduction 132
Higher azoles containing nitrogen as the only ring heteroatom: triazoles, tetrazole and pentazole 132
N-Deprotonation and N-metallated triazoles and tetrazoles 133
Benzotriazole 136
Higher azoles also containing ring sulfur or oxygen: oxa- and thiadiazoles 137
Higher azines 139
Introduction 139
Nucleophilic substitution at carbon 140
Palladium(0)-catalysed reactions 140
Pericyclic reactions 141
Ring synthesis of higher azines 141
Exercises 142
15. Heterocycles with Ring-Junction Nitrogen (Bridgehead Nitrogen) 143
Introduction 143
Indolizine 144
Azaindolizines 144
Synthesis of indolizines and azaindolizines 146
Quinoliziniums and quinolizinones 147
Heteropyrrolizines (pyrrolizines containing additional heteroatoms) 148
Cyclazines 148
Exercises 149
16. Non-Aromatic Heterocycles 150
Introduction 150
Three-membered rings 150
Four-membered rings 153
Five- and six-membered rings 153
Ring synthesis 155
17. Heterocycles in Nature 158
Heterocyclic -amino acids and related substances 158
Heterocyclic vitamins – co-enzymes 159
Porphobilinogen and the ‘Pigments of Life’ 162
Deoxyribonucleic acid (DNA), the store of genetic information, and ribonucleic acid (RNA), its deliverer 163
Heterocyclic secondary metabolites 165
18. Heterocycles in Medicine 167
Medicinal chemistry – how drugs function 167
Drug discovery 168
Drug development 169
The neurotransmitters 169
Histamine 170
Acetylcholine (ACh) 171
Anticholinesterase agents 172
5-Hydroxytryptamine (5-HT) (serotonin) 172
Adrenaline and noradrenaline 173
Other signifi cant cardiovascular drugs 173
Drugs acting specifi cally on the CNS 173
Other enzyme inhibitors 174
Anti-infective agents 175
Antiparasitic drugs 175
Antibacterial drugs 176
Antiviral drugs 177
Anticancer drugs 177
Photochemotherapy 178
19. Applications and Occurrences of Heterocycles in Everyday Life 180
Introduction 180
Dyes and pigments 180
Polymers 181
Pesticides 182
Explosives 184
Food and drink 186
Heterocyclic chemistry of cooking 187
Natural and synthetic food colours 190
Flavours and fragrances (F&F) 190
Toxins 192
Electrical and electronic 193
Index
Territory
This title is available for license in the following territories:
Eastern Europe & Turkey
Found In
This title is can be found in the following categories:
Biomedical Science